Logarithmic Conformal Field Theory

نویسنده

  • Michael Flohr
چکیده

The periods of arbitrary abelian forms on hyperelliptic Riemann surfaces, in particular the periods of the meromorphic Seiberg-Witten differential λ SW , are shown to be in one-to-one correspondence with the conformal blocks of correlation functions of the rational logarithmic conformal field theory with central charge c = c 2,1 = −2. The fields of this theory precisely simulate the branched double covering picture of a hyper-elliptic curve, such that generic periods can be expressed in terms of certain generalised hypergeometric functions, namely the Lauricella functions of type F D .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Logarithmic Conformal Field Theories

We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two– and three– point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ord...

متن کامل

Logarithmic conformal field theories and AdS correspondence

We generalize the Maldacena correspondence to the logarithmic conformal field theories. We study the correspondence between field theories in (d+1)-dimensional AdS space and the d-dimensional logarithmic conformal field theories in the boundary of AdSd+1. Using this correspondence, we get the n-point functions of the corresponding logarithmic conformal field theory in d-dimensions.

متن کامل

وزنهای پوچ توان در نظریه میدانهای همدیس

  Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory ne...

متن کامل

Logarithmic Correlation Functions in Liouville Field Theory

We study four-point correlation functions with logarithmic behaviour in Liouville field theory on a sphere, which consist of one kind of the local operators. We study them as non-integrated correlation functions of the gravitational sector of two-dimensional quantum gravity coupled to an ordinary conformal field theory in the conformal gauge. We also examine, in the (p, q) minimal conformal fie...

متن کامل

ar X iv : h ep - t h / 01 07 24 2 v 1 2 7 Ju l 2 00 1 Operator Product Expansion in Logarithmic Conformal Field Theory

In logarithmic conformal field theory, primary fields come together with logarithmic partner fields on which the stress-energy tensor acts non-diagonally. Exploiting this fact and global conformal invariance of two-and three-point functions, operator product expansions of logarithmic operators in arbitrary rank logarithmic conformal field theory are derived.

متن کامل

UH - 08 / 02 Boundary States in c = − 2 Logarithmic Conformal Field Theory

Starting from first principles, a constructive method is presented to obtain boundary states in conformal field theory. It is demonstrated that this method is well suited to compute the boundary states of logarithmic conformal field theories. By studying the logarithmic conformal field theory with central charge c = −2 in detail, we show that our method leads to consistent results. In particula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011